Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex.

نویسندگان

  • R Raballo
  • J Rhee
  • R Lyn-Cook
  • J F Leckman
  • M L Schwartz
  • F M Vaccarino
چکیده

Little is known about regionally specific signals that control the number of neuronal progenitor cells in vivo. We have previously shown that the germline mutation of the basic fibroblast growth factor (Fgf2) gene results in a reduction in the number of cortical neurons in the adult. We show here that Fgf2 is expressed in the pseudostratified ventricular epithelium (PVE) in a dorsoventral gradient and that Fgf2 and its receptor, Fgfr-1, are downregulated by mid to late stages of neurogenesis. In Fgf2 knockout mice, the volume and cell number of the dorsal PVE (the cerebral cortical anlage) are substantially smaller, whereas the volume of the basal PVE is unchanged. The dorsal PVE of Fgf2 knockout mice has a 50% decrease in founder cells and a reduced expansion of the progenitor pool over the first portion of neurogenesis. Despite this reduction, the degree of apoptosis within the PVE is not changed in the Fgf2 knockouts. Cortical neuron number was decreased by 45% in Fgf2 knockout mice by the end of neurogenesis, whereas the number of neurons in the basal ganglia was unaffected. Microscopically, the frontal cerebral cortex of neonatal Fgf2 null mutant mice lacked large neurons in deep cortical layers. We suggest that Fgf2 is required for the generation of a specific class of cortical neurons arising from the dorsal PVE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex.

Basic fibroblast growth factor (Fgf2) is required for the generation of founder cells within the dorsal pseudostratified ventricular epithelium, which will generate the cerebral cortex, but the ganglionic eminences are not affected. We report here that the Fgf2 null mutant mice show an approximately 40% decrease in cortical glutamatergic pyramidal neurons. In contrast, no change in pyramidal or...

متن کامل

Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2.

Basic fibroblast growth factor (FGF2) is a wide-spectrum mitogenic, angiogenic, and neurotrophic factor that is expressed at low levels in many tissues and cell types and reaches high concentrations in brain and pituitary. FGF2 has been implicated in a multitude of physiological and pathological processes, including limb development, angiogenesis, wound healing, and tumor growth, but its physio...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Glypican-4 is an FGF2-binding heparan sulfate proteoglycan expressed in neural precursor cells.

FGF2 is a crucial mitogen for neural precursor cells in the developing cerebral cortex. Heparan sulfate proteoglycans (HSPGs) are thought to play a role in cortical neurogenesis by regulating the action of FGF2 on neural precursor cells. In this article, we present data indicating that glypican-4 (K-glypican), a GPI-anchored cell surface HSPG, is involved in these processes. In the developing m...

متن کامل

The effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?

Objective(s): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine.  The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 13  شماره 

صفحات  -

تاریخ انتشار 2000